14x^2+1400x-12600=0

Simple and best practice solution for 14x^2+1400x-12600=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14x^2+1400x-12600=0 equation:



14x^2+1400x-12600=0
a = 14; b = 1400; c = -12600;
Δ = b2-4ac
Δ = 14002-4·14·(-12600)
Δ = 2665600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2665600}=\sqrt{78400*34}=\sqrt{78400}*\sqrt{34}=280\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1400)-280\sqrt{34}}{2*14}=\frac{-1400-280\sqrt{34}}{28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1400)+280\sqrt{34}}{2*14}=\frac{-1400+280\sqrt{34}}{28} $

See similar equations:

| x/6=7/14 | | 333x+999=1332 | | 1-2(2x-4)=2x-3-x+4 | | (3x+4)(5x+6)=0 | | 5(3x-2)=5+12 | | 5(3x-2)÷=5+12 | | 8i+15=2i+5 | | 8i+15=21+51 | | 6w=1=13 | | -10a+5=-90 | | (1+2x)(x^2-3x+1)=0 | | 36^3n-2•1/216=36^3n-2 | | 9-(x-9)=20 | | x^2+4x=-243 | | 1/512=2^(-3x) | | Y+1*6=3y*5 | | -4x+18=22+5x | | 5(x3)=20 | | .6666666667(x-9)=12 | | (1/16)^2a•16^-2a-3=64^2a | | x*1.25=35000 | | 216^2a/36^-a=216 | | 10m+32=12 | | 5b^2-7b=90 | | 4x+5x-3=2x+11 | | 7-24x+7x^2=0 | | 30=18f | | 5x+6+8x-15= | | 8x-6=5x-3x-12 | | 2x-5(x-2)=-8+3x-18 | | k-3k=4 | | k-3kk=4 |

Equations solver categories